Professional Certificate in Applied Machine Learning
Dates:
Business Intelligentisation Using Machine Learning and Rapidminer: 20 Apr, 21 Apr 2023 | 9am-5.30pm | Online
Python Programming: 19 May, 22 May, 24 May 2023 | 9am-5.30pm | Online
Applied Machine Learning: 22 Jun, 23 Jun 2023 | 9am – 5.30pm | Online
Duration: 7 Days
Course Objectives
This PC will equip learners with the following competencies:
- Understanding a wide spectrum of ML algorithms, their parameters, and their applications.
- Knowing how to use Rapidminer to implement ML algorithms.
- Understand how to develop machine learning models and how to evaluate them.
- Gathering basic and machine learning Python programming skills.
- Practicing how to represent the machine learning results using Rapidminer visualization facilities.
- Understanding different machine learning approaches and how to implement them.
Job Role Readiness
It will prepare learners in the following job roles to perform their responsibilities more effectively/ It will prepare learners for the following job roles:
- ICT engineers and technicians
- ICT executives
- Data analysts / business analysts
- Advisors and data service providers
Who Should Attend
Mid-career PMETs looking to pivot into roles requiring machine learning competencies.
Prerequisites
At least a polytechnic diploma
Course Conveners
(Click their photos to view their short biographies)
Assoc Prof Danny Poo

Assoc Prof Danny Poo
Assoc Prof Danny Poo brings with him 35 years of Software Engineering and Information Technology and Management experience. A graduate from the University of Manchester Institute of Science and Technology (UMIST), England, Dr Poo is currently an Associate Professor at the Department of Information Systems and Analytics, National University of Singapore. Prior to joining the University, Dr Poo was with the System Operations at DBSBank, Singapore.
A Steering Committee member of the Asia-Pacific Software Engineering Conference, Dr Poo is actively involved in Information Management and Healthcare Analytics research. A well-known speaker in seminars, Dr Poo has conducted numerous in-house training and consultancy for organizations, both locally and regionally. Dr Poo is the author of 5 books on Object-Oriented Software Engineering, Java Programming language and Enterprise JavaBeans.
Dr Poo notable teaching credentials include:
- Data Strategy
- Data StoryTelling
- Data Visualisation
- Data Analytics
- Machine Learning
- Data Management
- Data Governance
- Data Architecture
- Capstone Projects for Business Analytics
- Software Engineering
- Server-side Systems Design and Development
- Information Technology Project Management
- Health Informatics
- Healthcare Analytics
- Health Informatics Leadership.
Industry Credentials
- Deutsche Bank
- Gemplus
- Micron
- NCR
- PIL
- PSA
- Rhode-Schwarz
- Standard Chartered Bank
- ST Electronic
- Monetary Authority of Singapore
- Infocomm Development Authority
- National Library Board
- Ministry of Manpower
- Nanyang Technological University
- Nanyang Polytechnic
- National University Hospital.
Dr Ai Xin

Dr Ai Xin
Dr Ai Xin is currently a Lecturer with the School of Computing at the National University of Singapore (NUS). She has many years’ experience on teaching Artificial Intelligence and Data Science courses, e.g. machine learning, deep learning, data mining and etc.
She graduated from NUS with a PhD degree on Electrical and Computer Engineering. Her research focused on Game Theoretical Modelling, Optimization Methods, Algorithm Design and Wireless Networks.
She worked in BHP Billiton Marketing Asia for eight years and gained a lot of industry experience through different functions, e.g. risk management, supply chain management, sales and marketing planning and etc.
Dr Amirhassan Monajemi

Dr Amirhassan Monajemi
Dr Amirhassan Monajemi is a Senior Lecturer in AI and Machine Learning with the School of Computing (SoC) at the National University of Singapore (NUS). Prior to SoC, he was a Senior Lecturer in NUS School of Continuing and Lifelong Education (SCALE) teaching AI and Data Science to adult learners. Before joining the NUS, he was with the Faculty of Computer Engineering, University of Isfahan, Iran, where he was serving as a professor of AI, Machine Learning, and Data Science. He was born in Isfahan, Iran. He studied towards BSc and MSc in Computer Engineering at Isfahan University of Technology (IUT), and Shiraz University respectively. He got his PhD in computer engineering, pattern recognition and image processing, from the University of Bristol, Bristol, England, in 2005. His research interests include AI, Machine Learning, Machine Vision, IoT, Data Science, and their applications.
He has taught the artificial intelligence courses, including AI, Advanced AI, Expert Systems, Decision Support Systems, Neural Networks, and Cognitive Science since 2005 at both undergraduate and postgraduate levels. He was awarded the best university teacher of the province in 2012. He also has studied Learning Management Systems, E-Learning, and E-Learning for workplaces since 2007.
Dr Monajemi has registered a few patents in the fields of AI, Machine Vision, and Signal Processing applications, including an AI and machine vision-based driver drowsiness detection system and a low power consuming spherical robot. He also has published more than a hundred research papers in peer-reviewed, indexed journals and international conferences (IEEE, Elsevier, Springer, and so on), and supervised several Data Science, IoT, and AI industrial projects in various scales, including Isfahan intelligent traffic system delivery and testing, and red light runners detection. He is experienced in different sub-domains of Artificial Intelligence and Machine Learning, from theory to practice, including Deep Learning, Logic, and Optimisation.
Course Fees
Total Nett Programme Fee Payable, Including GST, after additional funding from the various funding schemes
Participants must fulfill at least 75% attendance and pass all assessment components to be eligible for SSG funding.
To enquire, email soc-ace@nus.edu.sg
To register, click Register
Python Programming Course Code: TGS – 2022011018 (Classroom Learning) / TGS – 2022011046 (Synchronous e-learning)
Applied Machine Learning Course Code: TGS-2020504368 (Classroom Learning) / TGS-2020504368 (Synchronous e-learning)
Business Intelligentisation Using Machine Learning and Rapidminer Course Code: TGS-2022011495 (Classroom Learning) / TGS-2022011576 (Synchronous e-learning)
For members of public and NUS Alumnus (without R&G Voucher), please follow the steps below:
Select Short Course / Modular Course -> Apply for Myself -> Browse Academic Modules / Short Courses-> Module/Course Category -> Short Courses -> Browse Courses-> Advanced Computing for Exe (Faculty/Department / Unit)
Please download the user guide for NUS Online Application Portal after you click ‘Apply for Myself’ if you need assistance.
Catalogue of Programmes for Individuals
- Course Category
- Artificial Intelligence & Machine Learning
- Business Analytics & Data Science
- Cloud Computing & Internet of Things
- Cybersecurity & Data Governance
- Digital Business & Technopreneurship
- Digital Health & Nursing Informatics
- Digital Technology & Innovation Management
- Digital Transformation & Change Leadership
- Education Technology & Learning Design
- Emerging & Disruptive Technologies
- FinTech & Blockchain
- Interactive Media Development & Metaverse
- Software Programming & Networking
- UX/UI Design & Digital Product Management